Menu Close

Professional profile

Scientific interests

  • Undestanding of geomechanical-seismological (“seismomechanical”) processes in fluid- and mining-induced seismicity.
  • Physics of earthquake source
  • Earthquake scaling relations between laboratory experiments on rock samples and picoseismicity recorded in-situ.
  • Acoustic emission analysis from laboratory experiments on rock samples

 

Education

  • 2002 MEng in Environmental Geophysics: AGH University of Science and Technology, Cracov, Poland, Dept. of Geology, Geophysics and Environmental Protection. Title of thesis: “A computer program for the local seismic hazard assessment based on the catalog of Rudna Copper Mine”.
  • 2007 PhD in Seismology, Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland. Title of thesis: “Source tomography of seismic events recorded in Rudna Copper Mine, Poland”.
  • 2014 Habilitation in Earth Sciences, Institute of Geophysics, Polish Academy of Sciences. Title: “Source processes and scaling relations from induced seismicity to laboratory studies on rock samples”.

Career

Projects

  • Analysis of fluid-induced seismicity related to EGS systems: Gross Schoenebeck geothermal laboratory, Berlin Geothermal Field (GEISER project), The Geysers geothermal field (USA), St1 Deep Heat (Helsinki, Finland)
  • Analysis of acoustic emission in laboratory experiments on rock samples (calibration, moment tensors, source parameters)
  • Source processes and scaling relations of nano- and picoseismicity in gold mines in South Africa (JAGUARS project).
  • Comprehensive study of microseismicity at Rudna copper mine, Poland: nucleation phase, source tomography, spectral parameters, focal mechanisms, seismic hazard analysis.
  • Software development:
    • RISK – Non-parametric seismic hazard analysis software for Windows environment (dedicated RISK web page).
    • FOCI – Seismic moment tensor and source parameters assessment software for Windows environment (dedicated FOCI page).
    • fociMT and hybridMT – Seismic moment tensor inversion and refinement software package.
    • fastloc.REEL-AI – near-real-time AI-aided location and relocation of induced seismicity (http://www.fastloc.eu), see also fastloc.REEL-AI dedicated page.
    • MSATSI – stress tensor inversion in MATLAB environment.

Publication list

List of publications (sorted by year). Most published papers are available to download directly from this site. If you are interested in any paper and for some reason you cannot download it, please contact me.

Publications in journals

Recent papers / Papers in preparation or review

  • Kwiatek, G., P. Martínez-Garzón, T. Goebel, M. Bohnhoff, Y. Ben-Zion, and G. Dresen (2024). Intermittent Criticality Multi-Scale Processes Leading to Large Slip Events on Rough Laboratory Faults, Journal of Geophysical Research: Solid Earth 129, no. 3, e2023JB028411, DOI: 10.1029/2023JB028411. [ Article Page ] [ Download open-access article ] [ Data publication ]
  • Karimpouli, S., G. Kwiatek, P. Martínez-Garzón, G. Dresen, and M. Bohnhoff (2024). Unsupervised clustering of catalog-driven features for characterizing temporal evolution of labquake stress, Geophysical Journal International ggae071, DOI" 10.1093/gji/ggae071. [ Article Page ] [ Download open-access article ]
  • Kwiatek, G., I. Grigoratos and S. Wiemer (2023). Variability of seismicity rates and maximum magnitude for adjacent hydraulic stimulations ( submitted to SRL)
  • Wang, L., G. Kwiatek, F. Renard, S. Guérin-Marthe, E. Rybacki, M. Bohnhoff, M. Naumann, and G. Dresen (2024). Fault roughness controls injection-induced seismicity, Proceedings of the National Academy of Sciences 121, no. 3, e2310039121, DOI: 10.1073/pnas.2310039121. [ Article Page ] [ Download open-access article ]
  • Wang, L., G. Kwiatek, M. Bohnhoff, E. Rybacki, and G. Dresen (2024). Injection-induced fault slip and associated seismicity in the lab: Insights from source mechanisms, local stress states and fault geometry, Earth Planet. Sci. Lett. 626, 118515, DOI: 10.1016/j.epsl.2023.118515. [ Article Page ] [ Download open-access article ]

Published

  1. Kwiatek, G., P. Martínez-Garzón, D. Becker, G. Dresen, F. Cotton, G. C. Beroza, D. Acarel, S. Ergintav, and M. Bohnhoff (2023). Months-long seismicity transients preceding the 2023 MW 7.8 Kahramanmaraş earthquake, Türkiye. Nature Communications 14, 7534, DOI: 10.1038/s41467-023-42419-8. [ Article Page ] [ Download open-access article ]
  2. Karimpouli, S., D. Caus, H. Grover, P. Martínez-Garzón, M. Bohnhoff, G. C. Beroza, G. Dresen, T. Goebel, T. Weigel, and G. Kwiatek (2023). Explainable machine learning for labquake prediction using catalog-driven features. Earth and Planetary Science Letters 622, 118383, DOI: 10.1016/j.epsl.2023.118383. [ Article Page ] [ Download open-access Article ]
  3. Amemoutou, A., Martínez-Garzón, P., Durand, V., Kwiatek, G., Bohnhoff, M., & Dresen, G. (2023). Spatio-temporal variations of seismic coupling along a transform fault: The western North Anatolian Fault Zone. Geophysical Journal International, 235(2), 1982–1995. DOI: 10.1093/gji/ggad341. [ Article Page ]
  4. Martínez-Garzón, P., D. Becker, J. Jara, X. Chen, G. Kwiatek, and M. Bohnhoff (2023). The 2022 MW 6.0 Gölyaka–Düzce earthquake: an example of a medium-sized earthquake in a fault zone early in its seismic cycle. Solid Earth 14, 1103–1121, DOI: 10.5194/se-14-1103-2023. [ Article Page ] [ Download article ]
  5. Patton, A., T. Goebel, G. Kwiatek, and J. Davidsen (2023). Large-scale heterogeneities can alter the characteristics of compressive failure and accelerated seismic release, Phys. Rev. E 108, no. 1, 014131, DOI: 10.1103/PhysRevE.108.014131. [ Article Page ]
  6. Roselli, P., L. Improta, G. Kwiatek, P. Martínez-Garzón, G. Saccorotti, and A. M. Lombardi (2023). Source mechanisms and induced seismicity in the Val d’Agri Basin (Italy), Geophysical Journal International 234, no. 3, 1617–1627, DOI: 10.1093/gji/ggad155. [ Article Page ]
  7. Boese, C. M., G. Kwiatek, K. Plenkers, T. Fischer, and G. Dresen (2023). Performance Evaluation of AE Sensors Installed Like Hydrophones in Adaptive Monitoring Networks During a Decametre-Scale Hydraulic Stimulation Experiment, Rock Mechanics and Rock Engineering, DOI: 10.1007/s00603-023-03418-9. [ Article Page ] [ Download open-access article ]
  8. Guérin-Marthe, S., G. Kwiatek, L. Wang, A. Bonnelye, P. Martínez-Garzón, and G. Dresen (2023). Preparatory Slip in Laboratory Faults: Effects of Roughness and Load Point Velocity, Journal of Geophysical Research: Solid Earth 128, no. 4, e2022JB025511, DOI: 10.1029/2022JB025511. [ Article Page ] [ Download open-access article ] [ Link to data publication ]
  9. Bonnelye, A., P. Dick, M. Bohnhoff, F. Cotton, R. Giese, J. Henninges, D. Jougnot, G. Kwiatek, and S. Lüth (2023). CHENILLE: Coupled Behavior Understanding of Faults: from the Laboratory to the Field, Adv. Geosci. 58, 177–188, DOI: 10.5194/adgeo-58-177-2023. [ Article Page ]
  10. Holmgren, J. M., G. Kwiatek, and M. J. Werner (2023). Nonsystematic Rupture Directivity of Geothermal Energy Induced Microseismicity in Helsinki, Finland, Journal of Geophysical Research: Solid Earth 128, no. 3, e2022JB025226, DOI: 10.1029/2022JB025226. [ Article Page ] [ Download open-access article ] [ Link to data publication ]
  11. Blanke, A., C. M. Boese, G. Dresen, M. Bohnhoff, and G. Kwiatek (2023). Metre-scale damage zone characterization using S-coda waves from active ultrasonic transmission measurements in the STIMTEC project, URL Reiche Zeche, Germany, Geophysical Journal International 233, no. 2, 1339–1355, DOI: 10.1093/gji/ggad003. [ Article Page ] [ Link to data publication ]
  12. Ji, Y., L. Wang, H. Hofmann, G. Kwiatek, and G. Dresen (2022). High-Rate Fluid Injection Reduces the Nucleation Length of Laboratory Earthquakes on Critically Stressed Faults in Granite, Geophysical Research Letters 49, no. 23, e2022GL100418, DOI: 10.1029/2022GL100418. [ Article Page ] [ Download open-access article ]
  13. Schuster, V., E. Rybacki, A. Bonnelye, G. Kwiatek, A. M. Schleicher, and G. Dresen (2022). Strain Partitioning and Frictional Behavior of Opalinus Clay During Fault Reactivation, Rock Mechanics and Rock Engineering, DOI 10.1007/s00603-022-03129-7. [ Article Page ] [ Download open-access article ]
  14. Kwiatek, G., P. Martínez-Garzón, J. Davidsen, P. Malin, A. Karjalainen, M. Bohnhoff, and G. Dresen (2022). Limited Earthquake Interaction During a Geothermal Hydraulic Stimulation in Helsinki, Finland, Journal of Geophysical Research: Solid Earth 127, no. 9, e2022JB024354, DOI: 10.1029/2022JB024354. [ Article Page ] [ Download open-access article ] [ Link to data publication ]
  15. Durand, V., A. Gualandi, S. Ergintav, G. Kwiatek, M. Haghshenas, M. Motagh, G. Dresen, and P. Martínez-Garzón (2022). Deciphering aseismic deformation along submarine fault branches below the eastern Sea of Marmara (Turkey): Insights from seismicity, strainmeter, and GNSS data, Earth and Planetary Science Letters 594, 117702, DOI: 10.1016/j.epsl.2022.117702. [ Article Page ]
  16. Boese, C. M., G. Kwiatek, T. Fischer, K. Plenkers, J. Starke, F. Blümle, C. Janssen, and G. Dresen (2022). Seismic monitoring of the STIMTEC hydraulic stimulation experiment in anisotropic metamorphic gneiss, Solid Earth 13, no. 2, 323–346, DOI: 10.5194/se-13-323-2022. [ Article Page ]
  17. Plenkers, K., G. Manthei, and G. Kwiatek (2022). Underground In-situ Acoustic Emission in Study of Rock Stability and Earthquake Physics. In: Grosse C. U., M. Ohtsu, D.G. Aggelis, and T. Shiotani (eds). Acoustic Emission Testing. Springer Tracts in Civil Engineering. Springer, Cham, DOI: 10.1007/978-3-030-67936-1_16. [ Article Page ]
  18. Davidsen, J., T. Goebel, G. Kwiatek, S. Stanchits, J. Baró, and G. Dresen (2021). What Controls the Presence and Characteristics of Aftershocks in Rock Fracture in the Lab? Journal of Geophysical Research: Solid Earth 126, e2021JB022539, DOI: 10.1029/2021JB022539. [ Article Page ] [ Link to data publication ]
  19. Staszek, M., Ł. Rudziński, and G. Kwiatek (2021). Spatial and temporal multiplet analysis for identification of dominant fluid migration path at The Geysers geothermal field, California. Scientific Reports 11, 23908, DOI: 10.1038/s41598-021-03267-y. [ Article Page ]
  20. Martínez‐Garzón, P., V. Durand, S. Bentz, G. Kwiatek, G. Dresen, T. Turkmen, M. Nurlu, and M. Bohnhoff (2021). Near‐Fault Monitoring Reveals Combined Seismic and Slow Activation of a Fault Branch within the Istanbul–Marmara Seismic Gap in Northwest Turkey. Seismological Research Letters, DOI: 10.1785/0220210047. [ Article Page ]
  21. Amemoutou, A., P. Martínez-Garzón, G. Kwiatek, J. L. Rubinstein, and M. Bohnhoff (2021). Earthquake Source Mechanisms and Stress Field Variations Associated With Wastewater-Induced Seismicity in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth 126, e2020JB021625, DOI: 10.1029/2020JB021625. [ Article Page ]
  22. Leonhardt, M., G. Kwiatek, P. Martínez-Garzón, M. Bohnhoff, T. Saarno, P. Heikkinen, and G. Dresen (2021). Seismicity during and after stimulation of a 6.1 km deep enhanced geothermal system in Helsinki, Finland. Solid Earth 12, 581–594, DOI: 10.5194/se-12-581-2021. [ Article Page ] [ Link to data publication ]
  23. Villiger, L., V. S. Gischig, G. Kwiatek, H. Krietsch, J. Doetsch, M. Jalali, F. Amann, D. Giardini, and S. Wiemer (2021). Meter-scale stress heterogeneities and stress redistribution drive complex fracture slip and fracture growth during a hydraulic stimulation experiment. Geophysical Journal International DOI: 10.1093/gji/ggab057. [ Article Page ]
  24. Blanke, A., G. Kwiatek, T. H. W. Goebel, M. Bohnhoff, and G. Dresen (2021). Stress drop–magnitude dependence of acoustic emissions during laboratory stick-slip. Geophysical Journal International 224, 1371–1380, DOI: 10.1093/gji/ggaa524. [ Article Page ] [ Link to data publication ]
  25. Martínez-Garzón, P., G. Kwiatek, S. Bentz, M. Bohnhoff, and G. Dresen (2020). Induced earthquake potential in geothermal reservoirs: Insights from The Geysers, California. The Leading Edge 39, 873–882, DOI: 10.1190/tle39120873.1. [ Article page ]
  26. Wang, L., G. Kwiatek, E. Rybacki, M. Bohnhoff, and G. Dresen (2020). Injection-Induced Seismic Moment Release and Laboratory Fault Slip: Implications for Fluid-Induced Seismicity. Geophysical Research Letters 47, e2020GL089576, DOI: 10.1029/2020GL089576. [ Article Page ]
  27. Dresen, G., G. Kwiatek, T. Goebel, and Y. Ben-Zion (2020). Seismic and Aseismic Preparatory Processes Before Large Stick–Slip Failure. Pure and Applied Geophysics, DOI: 10.1007/s00024-020-02605-x. [ Article page ]
  28. Durand, V., S. Bentz, G. Kwiatek, G. Dresen, C. Wollin, O. Heidbach, P. Martínez‐Garzón, F. Cotton, M. Nurlu, and M. Bohnhoff (2020). A Two‐Scale Preparation Phase Preceded an Mw 5.8 Earthquake in the Sea of Marmara Offshore Istanbul, Turkey. Seismological Research Letters 91, 3139–3147, DOI: 10.1785/0220200110. [ Article page ] [ Link to data publication ]
  29. Kwiatek, G., and Y. Ben-Zion (2020). Detection Limits and Near-Field Ground Motions of Fast and Slow Earthquakes, Journal of Geophysical Research: Solid Earth 125, no. 7, e2019JB018935, DOI: 10.1029/2019JB018935. [ Article Page ] [ Download open-access article ] [ Link to associated data publication ]
  30. Orlecka-Sikora, B., S. Lasocki, J. Kocot, T. Szepieniec, J.-R. Grasso, A. Garcia-Aristizabal, M. Schaming, P. Urban, G. Jones, I. Stimpson, S. Dineva, P. Sałek, K. Leptokaropoulos, G. Lizurek, D. Olszewska, J. Schmittbuhl, G. Kwiatek, A. Blanke, G. Saccarotti, K. Chodzińska, Ł. Rudziński, I. Dobrzycka, G. Mutke, A. Barański, A. Pierzyna, E. Kozlovskaya, J. Nevalainen, J. Kinscher, J. Sileny, M. Sterzel, S. Cielesta and T. Fischer (2020). An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation, Scientific Data 7 (1), 89, DOI: 10.1038/s41597-020-0429-3. [ Article Page ]
  31. Wang, L., G. Kwiatek, E. Rybacki, A. Bonnelye, M. Bohnhoff, and G. Dresen (2020). Laboratory study on fluid-induced fault slip behavior: The role of fluid pressurization rate, Geophysical Research Letters, DOI: 10.1029/2019GL086627. [ Article Page ] [ Download open-access article ] [ Link to data publication ]
  32. Bentz, S., G. Kwiatek, P. Martínez-Garzón, M. Bohnhoff, and G. Dresen (2020). Seismic moment evolution during hydraulic stimulations, Geophys. Res. Lett.  DOI: 10.1029/2019GL086185. [ Article Page ] [ Download open-access article ] [ Link to data publication ]
  33. Ader, T., M. Chendorain, M. Free, T. Saarno, P. Heikkinen, P.E. Malin, P. Leary, G. Kwiatek, G. Dresen, F. Bluemle, and T. Vuorinen (2019). Design and implementation of a traffic light system for deep geothermal well stimulation in Finland, J. Seismol. DOI:  10.1007/s10950-019-09853-y. [ Article Page ]
  34. Blanke, A., G. Kwiatek, P. Martínez‐Garzón, and M. Bohnhoff (2019). Sensitivity and Stability Analysis of Coda Quality Factors at The Geysers Geothermal Field, California, Bull. Seismol. Soc. Am., DOI: 10.1785/0120180219. [ Article Page ] [ Link to data publication ]
  35. Bentz, S., P. Martínez-Garzón, G. Kwiatek, G. Dresen, and M. Bohnhoff (2019). Analysis of Microseismicity Framing ML > 2.5 Earthquakes at The Geysers Geothermal Field, California, Journal of Geophysical Research: Solid Earth, DOI: 10.1029/2019JB017716. [ Article Page ] [ Link to data publication ]
  36. Kwiatek, G., T. Saarno, T. Ader, F. Bluemle, M. Bohnhoff, M. Chendorain, G. Dresen, P. Heikkinen, I. Kukkonen, P. Leary, M. Leonhardt, P. Malin, P. Martínez-Garzón, K. Passmore, P. Passmore, S. Valenzuela, and C. Wollin (2019). Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland, Sci Adv 5, no. 5, eaav7224, doi 10.1126/sciadv.aav7224. [ Article Page ] [ Link to data publication ]
  37. Hofmann, H., G. Zimmermann, M. Farkas, E. Huenges, A. Zang, M. Leonhardt, G. Kwiatek, P. Martinez-Garzon, M. Bohnhoff, Ki-Bok Min, P. Fokker, R. Westaway, F. Bethmann, P. Meier, K.S. Yoon, J. W. Choi, T. J. Lee, and K. Y. Kim (2019). First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea, Geophys. J. Int. 217, no. 2, 926–949, DOI 10.1093/gji/ggz058. [ Article Page ]
  38. Martínez-Garzón, P., M. Bohnhoff, D. Mencin, G. Kwiatek, G. Dresen, K. Hodgkinson, M. Nurlu, F. T. Kadirioglu, and R. F. Kartal (2019). Slow strain release along the eastern Marmara region offshore Istanbul in conjunction with enhanced local seismic moment release. Earth and Planetary Science Letters 510, 209–218, DOI 10.1016/j.epsl.2019.01.001. [ Article Page ]
  39. Cielesta, S., B. Orlecka-Sikora, M. Staszek, P. Urban, D. Olszewska, E. Ruigrok, S. Toon, M. Picozzi, G. Kwiatek, S. Cesca, J. A. López Comino, C. Isherwood, N. Montcoudiol, and J. Jarosławski (2018). SHEER “smart” database: technical note. Acta Geophysica 67 (1), 291-297, DOI: 10.1007/s11600-018-0205-3. [ Article Page ]
  40. Kwiatek, G., P. Martínez-Garzón, K. Plenkers, M. Leonhardt, A. Zang, S. von Specht, G. Dresen and M. Bohnhoff (2018). Insights Into Complex Subdecimeter Fracturing Processes Occurring During a Water Injection Experiment at Depth in Äspö Hard Rock Laboratory, Sweden. Journal of Geophysical Research: Solid Earth, DOI: 10.1029/2017JB014715. [ Article Page ]
  41. Martínez-Garzón, P., I. Zaliapin, Y. Ben-Zion, G. Kwiatek, and M. Bohnhoff (2018). Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California. Journal of Geophysical Research: Solid Earth, 123. DOI: 10.1029/2017JB014972 [ Article Page ]
  42. Bentz, Stephan, P. Martínez-Garzón, G. Kwiatek, M. Bohnhoff, and J. Renner (2018). Sensitivity of Full Moment Tensors to Data Preprocessing and Inversion Parameters: A Case Study from the Salton Sea Geothermal Field, Bull. Seismol. Soc. Am. 108, no. 2, 588–603, DOI: 10.1785/0120170203. [ Article Page ]
  43. Leptokaropoulos, K., M. Staszek, S. Lasocki, P. Martínez-Garzón, and G. Kwiatek (2018). Evolution of seismicity in relation to fluid injection in the North-Western part of The Geysers geothermal field, Geophysical Journal International 212, no. 2, 1157–1166, DOI: 10.1093/gji/ggx481. [ Article Page ]
  44. Kwiatek, G., K. Plenkers, P. Martínez-Garzón, M. Leonhardt, A. Zang, and G. Dresen (2017), New Insights into Fracture Process through In-Situ Acoustic Emission Monitoring During Fatigue Hydraulic Fracture Experiment in Äspö Hard Rock Laboratory, Procedia Engineering, 191, 618–622, DOI: 10.1016/j.proeng.2017.05.225. [ Article Page ]
  45. Staszek, M., Orlecka-Sikora, B., Leptokaropoulos, K., Kwiatek, G., and P. Martínez-Garzón (2017). Temporal static stress drop variations due to injection activity at The Geysers geothermal field, California. Geophys. Res. Lett. 44 (14), 7168–7176, DOI: 10.1002/2017GL073929. [ Article Page ]
  46. Goebel, T.H.W., Kwiatek, G., Becker, T.W., Brodsky, E.E. and G. Dresen (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology 45 (9): 815-818, DOI: 10.1130/G39147.1 [ Article Page ]
  47. Raub, C., Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., and G. Dresen (2017). Variations of seismic b-value at different stages of the seismic cycle along the North Anatolian Fault Zone in northwestern Turkey. Tectonophysics 712-713, 232-248, DOI: 10.1016/j.tecto.2017.05.028. [ Article Page ]
  48. Bohnhoff, M., Wollin, C., Domigall, D., Küperkoch, L., Martínez-Garzón, P., Kwiatek, G., Dresen, G., and P.E. Malin (2017). Repeating Marmara Sea Earthquakes: Indication for fault creep. Geophys. J. Int. 210 (1): 332-339, DOI: 10.1093/gji/ggx169. [ Article Page ]
  49. Davidsen, J., Kwiatek, G., Charalampidou, E.-M., Goebel, T., Stanchits, S., Rueck, M., and G. Dresen. Triggering processes in rock fracture. Phys. Res. Lett. 119, 068501, DOI: 10.1103/PhysRevLett.119.068501. [ Article Page ]
  50. Martínez-Garzón, P., Y. Ben-Zion, N. Abofalthian, G. Kwiatek, and M. Bohnhoff (2016). A refined methodology for stress inversions of earthquake focal mechanisms. J. Geophys. Res., 121, 8666-8687, DOI: 10.1002/2016JB013493. [ Article Page ]
  51. Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., and G. Dresen (2017). Volumetric components in the earthquake source related to fluid injection and stress state. Geophys. Res. Lett. 44, DOI: 10.1002/2016GL071963. [ Article Page ]
  52. Zang, A., Stephansson, O., Stenberg, L., Plenkers, K., Specht, S., Milkereit, K., Schill, E., Kwiatek, G., Dresen, G., Zimmermann, G., Dahm, T., and M. Weber (2017), Hydraulic fracture monitoring in hard rock at 410m depth with an advanced fluid-injection protocol and extensive sensor array, Geophys. J. Int., 208(2), 790–813, DOI: 10.1093/gji/ggw430 [ Article Page ]
  53. Martínez-Garzón, P., Vavryčuk, V., Kwiatek, G., and M. Bohnhoff (2016). Sensitivity of stress inversion of focal mechanisms to pore pressure changes. Geophys. Res. Lett., 43, 8441-8450, DOI: 10.1002/2016GL070145. [ Article Page ]
  54. Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., and G. Dresen (2016). Impact of fluid injection on fracture reactivation at The Geysers geothermal field. J. Geophys. Res. 121, DOI: 10.1002/2016JB013137. [ Article Page ]
  55. Kwiatek, G., and Y. Ben-Zion (2016). Theoretical Limits on the detection and analysis of small earthquakes, J. Geophys. Res. 121, DOI: 10.1002/2016JB012908. [ Article Page ]
  56. Kwiatek, G., Martínez-Garzón, P., and M. Bohnhoff (2016). HybridMT: A MATLAB/Shell Environment Package for Seismic Moment Tensor Inversion and Refinement. Seismol. Res. Lett. 87 (4), DOI: 10.1785/0220150251. [ Article page ] [ Download Full Text ]
  57. Stierle, E., Vavryčuk, V., Kwiatek, G., Charalampidou, E.-M., and M. Bohnhoff (2016). Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy, Geophys. J. Int. 205, no. 1, 38–50, DOI: 10.1093/gji/ggw009. [ Article page ]
  58. Urban, P., Lasocki, S., Blascheck, P., do Nascimento, A. F., Van Giang, N., and G. Kwiatek (2016). Violations of Gutenberg–Richter Relation in Anthropogenic Seismicity, Pure Appl. Geophys. 1–21, DOI: 10.1007/s00024-015-1188-5. [ Article page ]
  59. Kwiatek, G., Martínez-Garzón, P., Dresen, G., Bohnhoff, M., Sone, H., and C. Hartline (2015). Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field, J. Geophys. Res. 120, DOI: 10.1002/2015JB012362. [ Article Page ]
  60. Ickrath, M., Bohnhoff, M., Dresen, G., Bulut, F., Martínez-Garzón, P., Kwiatek, G. and O. Germer (2015). Detailed analysis of spatiotemporal variations of the stress field orientation along the Izmit-Düzce rupture in NW Turkey from inversion of first-motion polarity data. Geophys J. Int. 202, 2120-2132, DOI: 10.1093/gji/ggv273 [ Article Page ]
  61. Harrington, R. M., Kwiatek, G., and S. C. Moran (2015). Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington. J. Geophys. Res. 120 (7) 4966-4982, DOI: 10.1002/2014JB011744 [ Article Page ]
  62. Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G. and G. Hofmann (2015). Mining induced stress transfer and its relation to a Mw1.9 seismic event in an ultra-deep South African gold mine, Pure. Appl. Geophys., DOI: 10.1007/s00024-015-1033-x. [ Article page ]
  63. Kozłowska, M., Orlecka-Sikora, B., Kwiatek, G., Boettcher, M. S. and G. Dresen (2014). Nanoseismicity and picoseismicity rate changes from static stress triggering caused by a Mw2.2 earthquake in Mponeng gold mine, South Africa, J. Geophys. Res. 120, DOI: 10.1002/2014JB011410. [ Article page ]
  64. Martínez-Garzón, P., Kwiatek, G., Sone, H., Bohnhoff, M., Dresen, G., and C. Hartline (2014). Spatiotemporal changes, faulting regimes and source-parameters of induced seismicity: A case study from The Geysers geothermal field, J. Geophys. Res. 119, DOI: 10.1002/2014JB011385. [ Article page ]
  65. Kwiatek, G., Goebel, T., and G. Dresen (2014). Seismic moment tensor and b value variations over successive seismic cycles in laboratory stick-slip experiments. Geophys. Res. Lett. 41, DOI: 10.1002/2014GL060159. [ Article page ]
  66. Ziegler, M., K. Reiter, O. Heidbach, A. Zang, G. Kwiatek, T. Dahm, G. Dresen, and G. Hofmann (2014). Mining Induced Static Stress Transfer and Its Relation to a High-Precision Located Mw = 1.9 Seismic Event in a South African Gold Mine, in Rock Engineering and Rock Mechanics: Structures in and on Rock Masses; Proceedings of EUROCK 2014, ISRM European Regional Symposium, Leiden, edited by L. Alejano, A. Perucho, C. Olalla, and R. Jiménez, pp. 603–608, CRC Press/Balkema [ Article page ].
  67. Martínez-Garzón, P., Kwiatek, G., Ickrath, M. and M. Bohnhoff (2014). MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling and a visualization tool. Seismol. Res. Lett. 85 (4), 1-9, DOI: 10.1785/0220130189. [ Article page ] [ Download full text ] [ Download full text ]
  68. Charalampidou, E.-M., Stanchits, S., Kwiatek, G. and G. Dresen (2014). Brittle failure and fracture reactivation in sandstone by fluid injection, European Journal of Environmental and Civil Engineering, 1-16, DOI: 10.1080/19648189.2014.896752. [ Article Page ]
  69. Kwiatek, G., Charalampidou, E.-M., Dresen, G., and S. Stanchits (2014). An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle. Int. J. Rock Mech. Min. Sci. 65, 153-161, DOI: 10.1016/j.ijrmms.2013.11.005 [ Article Page ]
  70. Kwiatek, G., Bulut, F., Bohnhoff, M., and G. Dresen (2014). High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador. Geothermics 52, 98-111, DOI: 10.1016/j.geothermics.2013.09.008 [ Article Page ]
  71. Martínez-Garzón, P., Bohnhoff, M., Kwiatek, G., Zambrano-Narváez, G., and R. Chalaturnyk (2013). Microseismic monitoring of CO2 injection at the Pen West enhanced oil recovery pilot project, Canada: Implications for detection of wellbore leakage. Sensors 13 (9), 11522-11538, DOI: 10.3390/s130911522 [ Article Page ] [ Download full text ]
  72. Kwiatek, G. and Y. Ben-Zion (2013). Assessment of P and S wave energy radiated from very small shear-tensile seismic events in a deep South African mine. J. Geophys. Res. 118, 3630-3641, DOI: 10.1002/jgrb.50274. [ Article Page ]
  73. Martínez-Garzón, P., Bohnhoff, M., and G. Kwiatek (2013). Stress tensor changes related to fluid injection at The Geysers Geothermal Field, California. Geophys. Res. Letters. 40, 2596-2601, DOI: 10.1002/grl.50438. [ Article Page ]
  74. Davi, R., Vavrycuk, V., E.-M. Charalampidou, and G. Kwiatek (2013). Network sensor calibration for retrieving accurate moment tensors of acoustic emissions. Int. J. Rock Mech. Min. Sci.,62, 59-67, DOI: 10.1016/j.ijrmms.2013.04.004. [ Article Page ]
  75. Davidsen, J., and G. Kwiatek (2013). Earthquake interevent time distribution for induced micro-, nano- and picoseismicity. Phys. Rev. Lett., 110, 068501, DOI: 10.1103/PhysRevLett.110.068501. [ Article Page ] [ Download full text ]
  76. Davidsen, J., Kwiatek, G., and G. Dresen (2012). No evidence of magnitude clustering in an aftershock sequence of nano- and picoseismicity. Phys. Rev. Lett., 108, 038501, DOI: 10.1103/PhysRevLett.108.038501. [ Article Page ] [ Download full text ]
  77. Kwiatek, G., Plenkers, K., and G. Dresen (2011). Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: Implications for scaling relations. Bull. Seismol. Soc. Am., 101(6): 2592-2608, DOI: 10.1785/0120110094. [ Article Page ] [ Download full text ]
  78. Plenkers, K., Schorlemmer, D., and G. Kwiatek (2011). On the probability of detecting picoseismicity. Bull. Seismol. Soc. Am., 101(6): 2579-2591, DOI: 10.1785/0120110017. [ Article Page ] [ Download full text ]
  79. Naoi, M., Nakatani, M., Yabe, Y., Kwiatek, G., Igarashi, T., and K. Plenkers. Twenty thousand aftershocks of a very small (M2) earthquake and their relations to the mainshock rupture and geological structures (2011). Bull. Seismol. Soc. Am., 101(5): 2399–2407, DOI: 10.1785/0120100346. [ Article Page ] [ Download full text ]
  80. Kwiatek, G., Plenkers, K., Nakatani, M., Yabe, Y., Dresen, G., and JAGUARS Research Group (2010). Frequency-magnitude characteristics down to magnitude −4.4 for induced seismicity recorded at Mponeng gold mine, South Africa. Bull. Seismol. Soc. Am., 100(3): 1167–1173, DOI: 10.1785/0120090277. [ Article Page ] [ Download full text ]
  81. Plenkers, K., Kwiatek, G., Nakatani, M., Dresen, G., and JAGUARS Research Group (2010). Observation of seismic events with frequencies f > 25 kHz at Mponeng deep gold mine, South Africa. Seism. Res. Lett., 81(3): 467–478, DOI: 10.1785/gssrl.81.3.467. [ Article Page ] [ Download full text from Google Drive ]
  82. Kwiatek, G., Bohnhoff, M., Dresen, G., Schulze, A., Schulte, T., Zimmermann, G., and E. Huenges (2010). Microseismicity induced during fluid- injection: A case study from the geothermal site at Gross Schoenebeck, North German Basin. Acta Geophys., 58(6): 995–1020, DOI: 10.2478/s11600-010-0032-7. [ Article Page ] [ Download full text ]
  83. Orlecka-Sikora, B., Papadimitriou, E.E., and G. Kwiatek (2009). Study of the interaction among mining induced seismic events in the Legnica-Glogów Copper District, Poland. Acta Geophys., 57(2): 413–434, DOI: 10.2478/s11600-008-0085-z.  [ Download full text ]
  84. Moeck, I., Kwiatek, G., and G. Zimmermann (2009). Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. J. Struct. Geol., 31(10): 1174–1182, DOI: 10.1016/j.jsg.2009.06.012.
  85. Kwiatek, G. (2008). Relative source time function deconvolution at the Rudna copper mine: Uncertainty Estimation. J. Seismol., 12(4): 499–517, DOI: 10.1007/s10950-008-9100-8. [ Article Page ] [ Download full text ]

Other papers

  • Kwiatek, G., Bohnhoff, M., Martínez-Garzón, P., Bulut, F. and G. Dresen (2013). High-resolution reservoir characterization using induced seismicity and state of the art waveform processing techniques. First Break 31 (7), 81-88. [ Article Page ]
  • Kwiatek, G. (2007). Tomografia źródła wybranych zjawisk sejsmicznych w kopalni miedzi Rudna. Praca doktorska, Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland.
  • Kwiatek, G. (2004). A search for sequences of mining–induced seismic events at the Rudna copper mine in Poland. Acta Geophys. Pol., 52(2): 155–171.
  • Kwiatek, G. (2003). A search for the Slow Initial Phase generated by seismic events at a copper mine in Poland. Acta Geophys. Pol., 51(4): 369–385.
  • Kwiatek, G. (2002) Program komputerowy do analizy lokalnego hazardu sejsmicznego w zakladach górniczych ,,Rudna” KGHM Polska Miedzi S.A. Praca Magisterska, Zaklad Sejsmologii wydzialu Geologii, Geofizyki i Ochrony Środowiska Akademii Górniczo–Hutniczej im. Stanisława Staszica w Krakowie.

SELECTED Conference materials

  • Kwiatek, G., P. Martínez-Garzón, K. Plenkers, M. Leonhardt, A. Zang, S. Specht, G. Dresen, and M. Bohnhoff (2017). Insights into subdecimeter fracturing processes occurring during the hydraulic fracture experiment in Äspö HRL, Sweden, in Proceedings of EUROCK conference, Ostrava, Czech Republic.

  • Kwiatek, G., and Y. Ben-Zion (2016). Theoretical Limits on Detectability of Small Earthquakes, Seismol. Res. Lett. 87, 510.
  • Kwiatek, G., K. Plenkers, T. H. W. Goebel, and G. Dresen (2015). Seismological characterization of micro- and macrofracturing processes in a fault zone: A comparison of laboratory stick-slip friction experiments and close-by monitoring of Mw1.9 fault in a deep South African gold mine, in Proceedings of 9th International Workshop on Statistical Seismology STATSEI9, Potsdam, Germany.
  • Kwiatek, G., M. Bohnhoff, P. Martínez-Garzón, F. Bulut, and G. Dresen (2014). Geomechanical Reservoir Characterization Using Induced Seismicity and State-of-the-Art Waveform Processing Techniques. Seismol. Res. Lett. 85, 464. [ Show and download from Google Drive ]
  • Kwiatek, G., E.-M. Charalampidou, S. Stanchits, and G. Dresen (2013). An improved method for seismic moment tensor inversion of acoustic emissions: The effect of incidence angle, sensor coupling and damage evolution, Seism. Res. Lett. 84, no. 2, 353. [ Show and download from Google Drive ]
  • Kwiatek, G., F. Bulut, M. Bohnhoff, and G. Dresen (2013). High-Resolution Analysis of Microseismicity Related to Hydraulic Stimulation in the Berlín geothermal field, El Salvador, in Proceedings of 4th EAGE Passive Seismic Workshop, Amsterdam, The Netherlands. [ Show and download from Google Drive ]
  • Kwiatek, G., M. Bohnhoff, R. Harrington, F. Bulut, T. Goebel, and G. Dresen (2013). The spectral ratio method as a tool to investigate the source scaling relations from km- to cm-scale (Mw 4 to -6) earthquakes: Experiences from induced seismicity, volcanic-hybrid earthquakes and laboratory experiments, Seism. Res. Lett. 84, no. 2, 353. [ Show and download from Google Drive ]
2011-2012
  • Kwiatek, G., F. Bulut, M. Bohnhoff, and G. Dresen (2012). High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador. Abstract S43E-2518 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. [ Show and download from Google Drive ]
  • Martínez-Garzón, P., M. Bohnhoff, and G. Kwiatek (2012). Relation between crustal stress field changes and fluid injection at The Geysers geothermal field, California. Abstract S43E-2511 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec. [ Show and download from Google Drive ]
  • Plenkers, K., G. Kwiatek, F. Krüger, and JAGUARS Group (2012). Monitoring induced seismicity with AE sensors: The calibration problem. Abstract S43D-2486 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec.
  • R. Harrington and G. Kwiatek. Volcanic seismic earthquakes at Mount St. Helens exhibit a constant seismically radiated energy per unit size. In Geophys. Res. Abstr. 14, EGU2012-2731. European Geosciences Union, 2012. [ Show and download from Google Drive ]
  • G. Kwiatek and Y. Ben-Zion. Assessment of radiated P and S wave energy from shear and tensile picoseismicity in the Mponeng deep gold mine, South Africa. In Geophys. Res. Abstr. 14, EGU2012-12042.European Geosciences Union, 2012. [ Download Poster ]
  • G. Kwiatek, F. Bulut, M. Bohnhoff, and G. Dresen. High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. In Geophys. Res. Abstr. 14, EGU2012-2235. European Geosciences Union, 2012. [ Show and download from Google Drive ]
  • J. Davidsen, G. Kwiatek, and G.H. Dresen. Earthquake interevent time distribution for micro-, nano- and picoseismicity. Abstract NG43C-01 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec., 2011.
  • G.H. Dresen, T. Goebel, S. Stanchits, G. Kwiatek, and E.M. Charalampidou. Fault structure, damage and acoustic emission characteristics. Abstract T11E-02 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec., 2011.
  • R.M. Harrington and G. Kwiatek. Seismically radiated energy per unit area remains constant for families of volcanic hybrid earthquakes associated with the 2004-2008 Mount St. Helens dome building eruption. Abstract S53B-2283 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5-9 Dec., 2011.
  • G. Kwiatek and F. Bulut. Induced seismicity at Berlin geothermal field, El Salvador: Spatiotemporal characteristics of microearthquakes down to Mw−0.5. In Geophys. Res. Abstr., volume 13, pages EGU2011–10821. European Geosciences Union, 2011.
  • G. Kwiatek, K. Plenkers, and G. Dresen. Static and dynamic scaling relations from cm- to m- scale: A case study from in-situ geomechanical laboratory at Mponeng deep gold mine, South Africa. In Geophys. Res. Abstr., volume 13, pages EGU2011–10900. European Geosciences Union, 2011.
  • G. Zimmermann, A. Reinicke, G. Bloecher, I. Moeck, G. Kwiatek, W. Brandt, A. Saadat, and E. Huenges. Concepts for rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system. In Geophys. Res. Abstr., volume 13, pages EGU2011–2511. European Geosciences Union, 2011.
  • G. Kwiatek, K. Plenkers, and G. Dresen. Scaling relations of source parameters in picoscale (−4.1<Mw<−0.8): A case study from Mponeng deep gold mine, South Africa. Seism. Res. Lett., 82(2):317-318, 2011.
2009 - 2010
  • G. Kwiatek, K. Plenkers, G. Dresen, and JAGUARS Group. Source parameters of nanoseismicity recorded at Mponeng deep gold mine, South Africa: Implications for scaling relationships. Seism. Res. Lett. 81(2):355, 2010.
  • K. Plenkers, D. Schorlemmer, G. Kwiatek, and JAGUARS Group. Analysis of spatial variations in magnitude of completeness of JAGUARS catalog (−5 < M < −1) recorded in the Mponeng deep gold mine in South Africa. Seism. Res. Lett., 81(2):363, 2010.
  • K. Plenkers, D. Schorlemmer, G. Kwiatek, and JAGUARS Research Group. On the potentials and limitations of a seismic network’s sen- sitivity when monitoring induced seismicity. In J. Ritter and A. Oth, editors, Proceedings of the ECGS-FKPE Workshop on Induced Seismicity, volume 30 of Cahiers du Centre Europeen de Geodynamique et de Seismologie, pages 44–45, 2010.
  • G. Kwiatek, K. Plenkers, G. Dresen, and JAGUARS Research Group. Scaling relations of induced seismicity in picoscale: A case study from Mponeng deep gold mine, South Africa. In J. Ritter and A. Oth, ed- itors, Proceedings of the ECGS-FKPE Workshop on Induced Seismicity, volume 30 of Cahiers du Centre Europeen de Geodynamique et de Seismologie, pages 35–36, 2010.
  • M. Naoi, M. Nakatani, G. Kwiatek, K. Plenkers, Y. Yabe, and JAGUARS Research Group. Aftershock activity of a M2 earthquake in a deep South African gold mine — spatial distribution and magnitude- frequency relation. EOS Trans. AGU, 90(52):Fall Meet. Suppl., Abstract S23B–1761, 2009.
  • G. Kwiatek, K. Plenkers, D. Schorlemmer, M. Nakatani, G. Dresen, Y. Yabe, and JAGUARS Research Group. Magnitude of completeness study for induced seismicity with magnitudes down to -4.4 recorded at Mponeng deep gold mine, South Africa. EOS Trans. AGU, 90(52):Fall Meet. Suppl., Abstract S23B–1760, 2009.
  • K. Plenkers and G. Kwiatek. On the sensitivity of a high-frequency acoustic emission network. Seism. Res. Lett., 80(2):344, 2009.
  • K. Plenkers, G. Kwiatek, J. Philipp, S. Stanchits, and JAGUARS Working Group. Acoustic emission measurements in a deep gold mine in South Africa: Spectral analysis (JAGUARS-Project). In Geophys. Res. Abstr., volume 10, pages EGU2008–A–03682. European Geosciences Union, 2008. EGU General Assembly 2008, Vienna, Austria.
  • B. Orlecka-Sikora, E.E. Papadimitriou, and G. Kwiatek. Triggering effect of the static stress transfer in mining-induced seismicity from Rudna mine in the Legnica-Glogow Copper District, Poland. EOS Trans. AGU, 89(53): Fall Meet. Suppl. Abstract SS21B–1811, 2008.
  • M. Naoi, G. Kwiatek, Y. Yabe, J. Philipp, M. Nakatani, and T. Igarashi. Aftershock distribution of a M2.1 earthquake near a geologic struc- ture boundary in a deep South African gold mine. EOS Trans. AGU, 89(53): Fall Meet. Suppl. Abstract S31C–07, 2008.
  • K. Plenkers and G. Kwiatek. Jaguars-project: spectral analysis of mi- croseismicity and acoustic emission in a deep south african gold mine. Seism. Res. Lett., 79(2):330, 2008. SSA Annual Meeting 2008 (Santa Fe, New Mexico 2008).
Older than 2009
  • G. Kwiatek and N. Melis. Routine analysis of focal mechanism — moment tensor solutions of moderate, small magnitude events in Greece: An example of the Gulf of Corinth region. In Geophys. Res. Abstr., vol- ume 9, pages EGU2007–A–01706. European Geosciences Union, 2007.
  • G. Kwiatek. Source time function of mining-induced seismic events at Rudna copper mine, Poland: An accuracy analysis. In Geophys. Res. Abstr., volume 7, pages EGU2005–A–00925. European Geosciences Union, 2005.
  • G. Kwiatek. A search for the slow initial phase generated by seismic events at a copper mine in Poland. In Geophys. Res. Abstr., volume 6, pages EGU2004–A–01311. European Geosciences Union, 2004.