Results presented in the presentation has been already published in the following paper:

Kwiatek, G., and Y. Ben-Zion (2016). Theoretical limits on detection and analysis of small earthquakes, *Journal of Geophysical Research-Solid Earth* **121**, doi <u>10.1002/2016JB012908</u>.

Please consider referring to the above paper if you find this presentation useful!

Theoretical limits on detection and analysis of small earthquakes

<u>Grzegorz Kwiatek¹</u> and Yehuda Ben-Zion²

 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.2: Geomechanics and Rheology, Potsdam, Germany
University of Southern California, Department of Earth Sciences, Los Angeles, USA

Study

- Improve understanding of theoretical limits to detection of seismic events
- Clarify limitations for reliable derivation of source characteristics

Can we detect and reliably analyze earthquake in a particular combination of source, path, sensor and noise characteristics?

Can we provide first-order guidelines on designing local/regional seismic networks in various geological environments to reliably estimate the source characteristics?

Simulation parameters

Source modelling

- Rupture process described by M_0 , $\Delta\sigma$, and V_R .
- Rupture propagates radially with constant V_R and stops abruptly
- Radiation pattern: pure shear and pure tensile failure considered

Source characteristics and amplitude/frequency content

• RMS amplitude variations averaged over focal mechanisms and observations points vary between -23dB and +14dB w/r to source with $\Delta \sigma = 1MPa$ and $V_R = 0.9V_S$

Influence of attenuation

- Attenuation diminishes the high-frequency content of waves
- Two cases considered: $Q_P = Q_S$ and $Q_P = 9/4Q_S$

Noise

- Low frequency noise from Peterson (1993)
- High-frequency noise from various sites (surface and borehole sensors)

Sensor characteristics

• Different low-frequency cut-off (100s, 4.5Hz, 15Hz)

Results: Detection limits

• Sample detection limits using *P*-waves, GS11D sensor, $\Delta \sigma = 1$ MPa and $V_R = 0.9V_S$

Results: Attenuation and distance vs frequency content

• High frequencies suppressed due to attenuation

Results: Should we use P or S wave for detection?

- Amplitude/frequency content of S phases generally more affected by attenuation
- The smaller & further the event, the less preferable is S phase for detection

Summary

- We investigated theoretical limits on detection and analysis of small earthquakes using synthetic seismograms including influence of path, noise and properties of acquisition systems.
- We provide guidelines on designing local-to-regional seismic networks for detection of small events in various geological environments, and information relevant to a reliable analysis of earthquake source properties.

Conclusions

- The amplitude RMS-averaged over focal mechanisms and observations points vary between -23dB and +14dB with respect to the standard shear source. The *P*-wave amplitudes of a pure tensile source may be enhanced by up to +12dB (unlikely).
- Amplitude/frequency content of waves excited from source is predominantly affected by M_W and $\Delta\sigma$. The rupture velocity and radiation pattern have minor effects. In realistic scenarios, tensile faulting has no significant influence on S/N ratio.
- Distance and attenuation key limiting factors for EQ detectability and analysis of source properties.
- In certain circumstances, stronger attenuation of S waves may favor earthquake detection using P waves.
- Acquisition system characteristics seriously affect the detection and ability to analyze source properties of both small and large earthquakes.

Thank you for your attention!

Questions?

SSA 2016 Annual meeting, 20-22 April, Reno, Nevada

Signal-to-noise ratio calculation

• Bandpass filter 1-1000Hz applied to synthetic trace with superimposed noise

$$\frac{S}{N}[dB] = 20 \log_{10} \frac{\max(V(t))}{\operatorname{rms}(N(t), l)}$$

Results: Source variability vs amplitude

- RMS maximum ground velocity amplitude vary from -23dB to +14dB w/r to the seismic source with $\Delta \sigma = 1$ MPa and $V_R = 0.9V_S$.
- Pure tensile faulting ehnances RMS *P*-wave radiation by +12dB (unrealistic!)

Effects of attenuation and distance on frequency content

• Influence of sensor characteristics on low-frequenct part of the spectrum

Detection limits (aggregated source and path characteristics)

• GS11D sensor, *P*-wave

Motivation

- Detecting smaller events important
 - Increases resolution of monitoring and analyzing seismic processes associated with natural and human-related activities
- Denser networks closer to target source but...
 - Detection limits in various source/path/instrumental effects not well established