Currently browsing category

Publications

Publications

Paper in BSSA on focal mechanism of small earthquakes from the Salton Sea

Stephan Bentz published paper entitled “Sensitivity of Full Moment Tensors to Data Preprocessing and Inversion Parameters: A Case Study from the Salton Sea Geothermal Field”. The paper presents the results of investigation of mechanisms of approximately 80 small seismic events using two full seismic moment tensor inversion routines: the full waveform inversion and hybridMT code. The paper appeared in the Bulletin of Seismological Society of America.

Reference:

Bentz, Stephan, P. Martínez-Garzón, G. Kwiatek, M. Bohnhoff, and J. Renner (2018). Sensitivity of Full Moment Tensors to Data Preprocessing and Inversion Parameters: A Case Study from the Salton Sea Geothermal Field, Bull. Seismol. Soc. Am. DOI: 10.1785/0120170203.

New presentations on Earthquake Detection limits and Hydraulic fracturing experiment

I added two presentations from SSA Meeting in Reno in 2016, and recent EUROCK conference in Ostrava last year.

Kwiatek, G., P. Martínez-Garzón, K. Plenkers, M. Leonhardt, A. Zang, S. Specht, G. Dresen, and M. Bohnhoff (2017). Insights into subdecimeter fracturing processes occuring during the hydraulic fracture experiment in Äspö HRL, Sweden, in Proceedings of EUROCK conference, Ostrava, Czech Republic.

[ Download PDF document (32.31 MB) ]

Kwiatek, G., and Y. Ben-Zion (2016). Theoretical Limits on Detectability of Small Earthquakes, Seismol. Res. Lett. 87, 510.

[ Download PDF document (3.98 MB) ]

Paper in Geology on fault roughness

Together with Thomas Goebel and other co-authors we published a paper in Geology on fault roughness in laboratory stick-slip experiments on rock samples.

Reference:

Goebel, T.H.W., Kwiatek, G., Becker, T.W., Brodsky, E.E. and G. Dresen (2017). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology 45 (9): 815-818, DOI: 10.1130/G39147.1 [ Article Page ]

New paper on triggering processes in rock fracture experiments

We published a new manuscript in Physical Review Letters on triggering processes in laboratory experiments on rock samples (with implications to natural and induced seismicity of course!)

Reference

Davidsen, J., Kwiatek, G., Charalampidou, E.-M., Goebel, T., Stanchits, S., Rueck, M., and G. Dresen. Triggering processes in rock fracture. Phys. Res. Lett. 119, 068501, DOI: 10.1103/PhysRevLett.119.068501. [ Article Page ]

Abstract: We study triggering processes in triaxial compression experiments under a constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. We present strong evidence that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections, while such triggering is basically absent if no significant imperfections are present. In the former case, we recover all established empirical relations of aftershock seismicity including the Gutenberg-Richter relation, a modified version of the Omori-Utsu relation and the productivity relation—despite the fact that the activity is dominated by compaction-type events and triggering cascades have a swarmlike topology. For the Gutenberg-Richter relations, we find that the b value is smaller for triggered events compared to background events. Moreover, we show that triggered acoustic emission events have a focal mechanism much more similar to their associated trigger than expected by chance.

A paper on spatial distribution of b-value in North Anatolian Fault Zone

The paper on spatial variations of seismic Gutenberg-Richter b-value along the North Anatolian Fault Zone have been recently published in the Tectonophysics.

Reference:

Raub, C., Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., and G. Dresen (2017). Variations of seismic b-value at different stages of the seismic cycle along the North Anatolian Fault Zone in northwestern Turkey. Tectonophysics 712-713, 232-248, DOI: 10.1016/j.tecto.2017.05.028. [ Article Page ]